Sub. Code	
511201	

M.Sc. DEGREE EXAMINATION, APRIL 2021

Second Semester

Mathematics

LINEAR ALGEBRA

(CBCS - 2019 onwards)

Time : 3 Hours

Maximum : 75 Marks

Part A $(10 \times 2 = 20)$

Answer all questions.

- 1. Define linear combination of vectors.
- 2. If F is a field, verify that the *n*-tuple space, F^n is a vector space over the field F.
- 3. In R^3 , let $\alpha_1 = (1, 0, 1)$, $\alpha_2 = (0, 1, -2)$, $\alpha_3 = (-1, -1, 0)$. If *f* is a linear functional on R^3 such that $f(\alpha_1) = 1$, $f(\alpha_2) = -1$, $f(\alpha_3) = 3$ and if $\alpha = (a, b, c)$ find $f(\alpha)$?
- 4. Define dual space of a vector space.
- 5. If f and g are non-zero polynomials over F. Show that (a) fg is a non-zero polynomial (b) deg(fg) = deg f + deg g.
- 6. Find the g.c.d. of the following pairs of polynomials $3x^4 + 8x^2 3$, $x^3 + 2x^2 + 3x + 6$.

Wk 4

- 7. Find characteristic values of $\begin{bmatrix} 3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0 \end{bmatrix}$.
- 8. Define *n*-linear function and give an example for two linear function.
- 9. If V be a real vector space and E an idempotent linear operator on V. Find $(I + E)^{-1}$.
- 10. Define *T*-annihilator of a vector.

Part B $(5 \times 5 = 25)$

Answer all questions choosing either (a) or (b).

11. (a) If A is an $m \times n$ matrix over F and B, C are $n \times p$ matrices over F, show that A(dB+C) = d(AB) + ACfor each scalar d in F.

 \mathbf{Or}

- (b) If W is a proper subspace of a finite-dimensional vector space V. Prove that W is finite-dimensional and $\dim W < \dim V$.
- 12. (a) If W_1 and W_2 are subspaces of a finite-dimensional vector space, prove that $W_1 = W_2$ if and only if $W_1^0 = W_2^0$.

Or

(b) Suppose that A be an $n \times n$ matrix with real entries, prove that A = 0 if and only if trace (A'A) = 0.

 $\mathbf{2}$

13. (a) Prove that a polynomial f of degree n over a field F has at most n roots in F.

Or

- (b) Suppose $f \equiv g \mod p$ and $f_1 \equiv g_1 \mod p$. Prove that $f + f_1 \equiv g + g_1 \mod p$, $f f_1 \equiv gg_1 \mod p$.
- 14. (a) Suppose that K be a commutative ring with identity, and let A and B be $n \times n$ matrices over K. Prove that det $(AB) = (\det A)(\det B)$.

Or

- (b) Prove that the determinant of the Vandermonde matrix is (b-a)(c-a)(c-b).
- 15. (a) If V is a finite-dimensional vector space and let W_1 be any subspace of V, prove that there is a subspace W_2 of V such that $V = W_1 \oplus W_2$.

Or

(b) State and prove primary decomposition theorem.

Part C $(3 \times 10 = 30)$

Answer any **three** questions.

- 16. If W_1 and W_2 are finite-dimensional subspaces of a vector space V, prove that $W_1 + W_2$ is finite-dimensional and $\dim W_1 + \dim W_2 = \dim(W_1 \cap W_2) + \dim(W_1 + W_2)$.
- 17. If V be an *n*-dimensional vector space over the field F, and let W be an *m*-dimensional vector space over F. Prove that the space L(V,W) is finite-dimensional and has dimension mn.

3

- 18. If f,d are polynomials over a field F and d is different from 0 then there exist polynomials q,r in F[X] such that (a) f = dq + r (b) either r = 0 or $\deg r < \deg d$. Show that the polynomials q,r satisfying (a) and (b) are unique.
- 19. State and prove Cayley-Hamilton theorem.
- 20. State and prove Cyclic Decomposition theorem.

Sub. Code	
511202	

M.Sc. DEGREE EXAMINATION, APRIL 2021

Second Semester

Mathematics

REAL ANALYSIS — II

(CBCS – 2019 onwards)

Time : 3 Hours

Maximum : 75 Marks

 $(10 \times 2 = 20)$

Part A

Answer **all** questions.

- 1. Define rectifiable curve.
- 2. If f(x)=0 for all irrational x, f(x)=1 for all rational x, prove that $f \notin R$ on [a, b] for any a < b.
- 3. Define monotonically increasing function.
- 4. Give an example for $\{f_n\}$ and $\{g_n\}$ converge uniformly on some set E, but their product $\{f_n g_n\}$ does not converge uniformly on E.
- 5. Prove that $\{f_n\}$ is uniformly bounded on [0, 1], where

$$f_n(x) = \frac{x^2}{x^2 + (1 - nx)^2}, (0 \le x \le 1, n = 1, 2, ...)$$

- 6. Define equicontinuous functions.
- 7. Define radius of convergence of a power series.

- 8. Determine the interval of convergence for the power series $\sum_{n=0}^{\infty} n! (2x+1)^n$.
- 9. Prove that $|\sin n x| \le n |\sin x|$ for n = 0, 1, 2, ... and x real.
- 10. Define Gamma function.

Part B

 $(5 \times 5 = 25)$

Answer **all** questions, choosing either (a) or (b).

11. (a) If f is continuous on [a, b] prove that the $f \in R(\alpha)$ on [a, b].

Or

- (b) State and prove the fundamental theorem of calculus.
- 12. (a) Suppose $\{f_n\}$ is a sequence of functions defined on E and suppose $|f_n(x)| \le M_n (x \in E, n=1,2,3,...)$ Prove that $\sum f_n$ converges uniformly on E if $\sum M_n$ converges.

Or

- (b) For n=1,2,3,...,x real, put $f_n(x) = \frac{x}{1+nx^2}$. Show that $\{f_n\}$ converges uniformly to a function f, and the equation $f'(x) = \lim_{n \to \infty} f'_n(x)$.
- 13. (a) Let B be the uniform closure of an algebra A of bounded functions then prove that B is uniformly closed algebra.

Or

(b) If $\{f_n\}$ and $\{g_n\}$ converges uniformly on a set E, prove that $\{f_n + g_n\}$ converges uniformly on E. If, in addition, $\{f_n\}$ and $\{g_n\}$ are sequence of bounded functions, Prove that $\{f_n g_n\}$ converges uniformly on E.

14. (a) Let e^x be defined on real field R by $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ prove

- that
- (i) e^x is continuous and differentiable for all x.
- (ii) $\lim_{x \to +\infty} x^n e^{-x} = 0$, for every n.

Or

(b) Show that (i)
$$\lim_{n \to \infty} (1 + x/n)^n = e^x$$
, (ii) $\lim_{x \to 0} \frac{\log(1+x)}{x} = 1$.

15. (a) If the sequence of complex functions $\{\phi_n\}$ is orthonormal on [a, b] and if $f(x) \sim \sum_{n=1}^{\infty} c_n \phi_n(x)$,

show that
$$\sum_{n=1}^{\infty} |c_n|^2 \leq \int_a^b |f(x)|^2 dx$$
.

\mathbf{Or}

(b) If f is continuous (with period 2π) and if $\epsilon > 0$, prove that there a trigonometric polynomial P such that $|P(x) - f(x)| \le \epsilon$ for all real x.

Answer any three questions.

16. If γ is continuous on [a, b] prove that γ is rectifiable and $\wedge(\gamma) = \int_{a}^{b} |\gamma'(t)| dt$.

$$\wedge(\gamma) = \int_{a} |\gamma'(t)| dt$$

17. Suppose $f_n \to f$ uniformly on a set E in a metric space. Let x be a limit point of E and suppose that $\lim_{t \to x} f_n(t) = A_n, (n = 1, 2, 3, ...)$. Prove that $\{A_n\}$ converges and $\lim_{t \to x} f(t) = \lim_{n \to \infty} A_n$.

- 18. Let *A* be an algebra of real continuous functions on a compact set K. If A separates points on K and if A vanishes at no point of K, prove that the uniform closure B of A consists of all real continuous functions on K.
- 19. Suppose $a_0, a_1, ..., a_n$ are complex numbers, $n \ge 1, a_n \ne 0$

$$P(z) = \sum_{n=0}^{k} a_k z^k$$

Prove that P(z)=0 for some complex numbers z.

20. If
$$x > 0$$
 and $y > 0$ then prove that,

$$\int_{0}^{t} t^{x-1} (1-t)^{y-1} dt = \frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}.$$

4

Sub. Code	
511203	

M.Sc. DEGREE EXAMINATION, APRIL 2021.

Second Semester

Mathematics

COMPLEX ANALYSIS

(CBCS – 2019 onwards)

Time : 3 Hours

Maximum : 75 Marks

Part A $(10 \times 2 = 20)$

Answer all questions.

- 1. Define holomorphic function with suitable example.
- 2. If g(w) and f(z) are holomorphic functions, prove that g(f(z)) is also holomorphic function.
- 3. Prove that $n(-\gamma, a) = -n(\gamma, a)$ is the index of the point *a* with respect to a closed curve γ .
- 4. State Cauchy's theorem on a circular disk.
- 5. Find the poles of $f(z) = \frac{1}{z^2 + 5z + 6}$.
- 6. Define removable singularity.
- 7. Define harmonic functions.
- 8. How many roots does the equation $z^7 2z^5 + 6z^3 z + 1 = 0$ have in the disk |z| < 1.

- 9. Develop log $(\sin z/z)$ in powers of z upto the term z^4 .
- 10. Prove that the Laurent development is unique.

Part B
$$(5 \times 5 = 25)$$

Answer **all** questions, choosing either (a) or (b).

11. (a) State and prove Cauchy-Reimann equations.

Or

(b) Expand $\frac{2z+3}{z+1}$ in powers of z-1 and find its the radius of convergence.

12. (a) Compute (i)
$$\int_{|z|=1} \frac{e^z}{z} dz$$
 and (ii) $\int_{|z|=2} \frac{1}{(z^2+1)} dz$.

 \mathbf{Or}

- (b) if f(z) is analytic in an open disk Δ , prove that $\int_{\gamma} f(z) dz = 0 \text{ for every closed curve } \gamma \text{ in } \Delta.$
- 13. (a) State and prove the maximum principle theorem.

 \mathbf{Or}

- (b) Show that the function e^z , $\sin z$ and $\cos z$ have essential singularities at ∞ .
- 14. (a) Let f(z) be analytic except for isolated singularities a_j in a region Ω , prove that $\frac{1}{2\pi i} \int_{\gamma} f(z) dz = \sum_j n(\gamma, a_j) \operatorname{Re} s_{z=a_j} f(z)$.

Or

 $\mathbf{2}$

- (b) Evaluate the following integral by the method of residues $\int_0^{\pi/2} \frac{1}{a + \sin^2 x} dx$, |a| > 1.
- 15. (a) Express the Taylor development of $\tan z$ and the Laurent development of $\cos z$ in terms of the Bernoulli numbers.

Or

(b) If the function f_n(z) are analytic and ≠0 in a region Ω, and if f_n(z) converges to f(z), uniformly on every compact subset of Ω, prove that f(z) is either identically zero or never equal to zero in Ω.

Part C $(3 \times 10 = 30)$

Answer any **three** questions.

- 16. State and prove Abel's limit theorem.
- 17. Suppose that $\varphi(\zeta)$ is continuous on the arc γ , prove that the function $F_n(z) = \int_{\gamma} \frac{\varphi(\zeta)}{(\zeta - z)^n} d\zeta$ is analytic in each of the region determined by γ , and derivative is $F'_n(z) = nF_{n+1}(z).$
- (a) State and prove Cauchy's theorem on a rectagular disk.
 - (b) Determine $\oint_C \frac{6}{z(z-3)} dz$, where *C* is the curve |z-3| = 5.
- 19. Evaluate $\int_0^\infty (1+x^2)^{-1} \log x \, dx$.
- 20. State and prove the Weierstrass's theorem.

3

M.Sc. DEGREE EXAMINATION, APRIL 2021

Second Semester

Mathematics

DIFFERENTIAL GEOMETRY

(CBCS - 2019 onwards)

Time : 3 Hours

Maximum : 75 Marks

Part A $(10 \times 2 = 20)$

Answer all questions.

Each question carries 2 marks.

- 1. Find the equation of the osculating plane at a general point on the cubic curve given by $r = (u, u^2, u^3)$.
- 2. Prove that $[r', r'', r'''] = \kappa^2 \tau$.
- 3. Define osculating circle.
- 4. Find the coordinates of the cylindrical helix whose intrinsic equations are $\kappa = \tau = \frac{1}{s}$.
- 5. Write down the parametric or freedom equations of a surface.
- 6. Define the anchor ring.
- 7. Write the condition for two family of curves are orthogonal.

- 8. Define isometric or applicable.
- 9. Define normal curvature.
- 10. Prove that geodesic curvature vector of any curve is orthogonal to the curve.

Part B $(5 \times 5 = 25)$

Answer **all** questions, choosing either (a) or (b).

11. (a) Show that the length of the common perpendicular d of the tangents at two near points distance s apart

is approximately $d = \frac{\kappa \tau s^3}{12}$.

Or

- (b) Show that $[\dot{r}, \ddot{r}, \ddot{r}] = 0$ is a necessary and sufficient condition that the curve be plane.
- 12. (a) Explain locus of the center of spherical curvature.

Or

- (b) Show that the torsion of an involute of a curve is equal to $\frac{\rho(\sigma \rho' \sigma' \rho)}{(\rho^2 + \sigma^2) (c s)}.$
- 13. (a) A helicoid is generated by the screw motion of a straight line skew to the axis. Find the curve coplanar with the axis which generates the same helicoid.
 - Or
 - (b) Derive the angle between two parametric curves.

2

14. (a) If θ is the angle at the point (u, v) between the two directions given by $Pdu^2 + 2Qdudv + Rdv^2 = 0$, prove that $\tan \theta = \frac{2H(Q^2 - PR)^{\frac{1}{2}}}{ER - 2FQ + GP}$.

Or

- (b) Find a surface of revolution which is isometric with a region of the right helicoid.
- 15. (a) If (λ, μ) is the geodesic curvature vector, prove that

$$\kappa_g = \frac{-H\lambda}{Fu' + Gv'} = \frac{-H\mu}{Eu' + Fv'}$$

Or

(b) Prove that every point P of a surface has a neighbourhood which is convex and simple.

Part C $(3 \times 10 = 30)$

Answer any three questions.

Each question carries 10 marks.

- 16. Find the curvature and torsion of the cubic curve given by $r = (u, u^2, u^3)$.
- 17. Show that the intrinsic equations of the curve given by $x = a e^u \cos u$, $y = a e^u \sin u$, $z = b e^u$ are

$$\kappa = \frac{\sqrt{2}a}{(2a^2 + b^2)^{\frac{1}{2}}}s, \ \tau = \frac{b}{(2a^2 + b^2)^{\frac{1}{2}}}s.$$

- 18. Show that the parametric curves on the sphere given by $x = a \sin u \cos v$, $y = a \sin u \sin v$, $z = a \cos u$, $0 < u < \frac{1}{2}\pi$, $0 < v < 2\pi$, form an orthogonal system. Determine the two families of curves which meet the curves v = constant at angles of $\frac{1}{4}\pi$ and $\frac{3}{4}\pi$.
- 19. Prove that, on the general surface, a necessary and sufficient condition that the curve v = c be a geodesic is $EE_2 + FE_1 2EF_1 = 0$, when v = c, for all values of u.
- 20. Prove that every point P of the surface has a neighbourhood N with the property that every point of N can be joined to P by a unique geodesic arc which lies wholly in N.

4

R5369

Sub. Code	
511401	

M.Sc. DEGREE EXAMINATION, APRIL - 2021

Fourth Semester

Mathematics

FUNCTIONAL ANALYSIS

(CBCS – 2019 onwards)

Time : 3 Hours

Maximum : 75 Marks

Part A $(10 \times 2 = 20)$

Answer **all** the questions.

- 1. Define Banach space.
- 2. Define bounded linear operator.
- 3. Define Hilbert space with an example.
- 4. State Parallelogram equality.
- 5. Define Hilbert adjoint operator.
- 6. Define unitary and normal operators.
- 7. Define adjoint operator.
- 8. Show that a norm on a vector space X is a sublinear functional on X.
- 9. State open mapping theorem.
- 10. Prove that every subsequence of (x_n) converges weakly to x.

Part B (5 × 5 = 25)

Answer **all** questions, choosing either (a) or (b).

11. (a) State and prove the Riesz's lemma.

Or

- (b) In a finite dimensional normed space $X, M \in X$ is compact then prove that if and only if M is closed and bounded.
- 12. (a) State and prove Schwarz inequality.

Or

- (b) Let M be a compact subspace y and $x \in X$ fixed then prove that z = x - y is orthogonal to y.
- 13. (a) State and prove the existence of Hilbert adjoint operator T^* of T with the norm $||T^*|| = ||T||$.

Or

- (b) Let the operators $U: H \to H$ and $V: H \to H$ be unitary (Here, H is a Hilbert space) prove that
 - (i) ||U|| = 1, provided $H \neq \{0\}$
 - (ii) U is normal.
- 14. (a) State and prove Zorn's lemma.

Or

- (b) Prove that every Hilbert space is reflexive.
- 15. (a) Prove that strong convergence implies weak convergence with some limit.

 \mathbf{Or}

 $\mathbf{2}$

R5369

- (b) Prove that A sequence (T_n) of operator $T_n \in B(X,Y)$ where X,Y are Banach space is strongly operator convergent if and only if
 - (i) The sequence $(||T_n||)$ is bounded.
 - (ii) The sequence $(T_n x)$ is Cauchy in y for every x is a total subset M of X.

Part C $(3 \times 10 = 30)$

Answer any **three** questions.

- 16. State and prove inverse operator theorem.
- 17. State and prove Bessel inequality.
- 18. State and prove the properties of Hilbert adjoint operators.
- 19. State and prove Hann-Banach theorem.
- 20. State and prove closed graph theorem.

R5369

R5370

M.Sc. DEGREE EXAMINATION, APRIL -2021

Fourth Semester

Mathematics

PROBABILITY AND STATISTICS

(CBCS – 2019 Onwards)

Time : 3 Hours

Maximum : 75 Marks

Part A $(10 \times 2 = 20)$

Answer **all the** questions.

- 1. Define conditional probability.
- 2. Define moment generating function.
- 3. Define random vector.
- 4. Define expected value of a random vector.
- 5. Define Bernoulli distribution
- 6. Write the pdf of $\Gamma(a,\beta)$ distribution.
- 7. Define t-distribution.
- 8. Define order statistic.
- 9. Define convergence in probability.
- 10. State weak law of large numbers

Part B $(5 \times 5 = 25)$

Answer **all** questions, choosing either (a) or (b).

11. (a) What is the probability of getting six different faces when throwing six perfect dice?

 \mathbf{Or}

- (b) Cast a die a number of independent times until a six appears on the upside of the die. Let Y be the random variable defined by the number of casts needed to obtain the first six, Let $Z = e^{-Y}$. Calculate E[Z].
- 12. (a) Let $(X_{1,}X_{2})$ be a random vector, Let $Y_{1} = g_{1}(X_{1,}X_{2})$ and $Y_{2} = g_{2}(X_{1,}X_{2})$ be random variables whose expectations exist. Prove that for all real numbers k_{1} and k_{2} , $E(k_{1}Y_{1} + k_{2}Y_{2}) = k_{1}E[Y_{1}] + k_{2}E[Y_{2}]$.

Or

- (b) Let the continuous type random variables X and Y have the joint pdf $f(x, y) = \begin{cases} e^{-y} & \text{if } 0 < x < y < \infty \\ 0 & \text{elsewhere} \end{cases}$. Determine the marginal density functions of X and Y.
- 13. (a) The mgf of a random variable *X* is $e^{4(e^t-1)}$. Show that $P(\mu 2\sigma < X < \mu + 2\sigma) = 0.931$.

Or

(b) Let X have a $\chi^2(r)$ distribution. Prove that if k > -r/2, then $E(X^k)$ exists and is given by $E(X^k) = \frac{2^k \Gamma(r/2+k)}{\Gamma(r/2)}$. 2 **R5370** 14. (a) Let Y_1, Y_2, Y_3 be the order statistics of a random sample of size 3 from a distribution having $pdf f(x) = \begin{cases} 1 & if \ 0 < x < 1 \\ 0 & elsewhere \end{cases}$. Determine the pdf of the sample range $Z = Y_3 - Y_1$

$$\mathbf{Or}$$

(b) Let $f(x) = \frac{1}{6}$, x = 1,2,3,4,5,6 and zero elsewhere, be the pmf of a distribution of the discrete type. Show that the pmf of the smallest observation of a random sample of size 5 from this distribution is $g(y) = \left(\frac{7-y}{6}\right)^5 - \left(\frac{6-y}{6}\right)^5$, y = 1,2,3,4,5,6 and zero elsewhere

15. (a) Let T_n have a *t*-distribution with *n* degrees of freedom. n = 1,2,3... Prove that the limiting distribution of T_n is standard normal distribution.

Or

(b) Compute an approximate probability that the mean of a random sample of size 15 from a distribution having pdf $f(x) = 3x^2, 0 < x < 1$, zero elsewhere, is between $\frac{3}{5}$ and $\frac{4}{5}$.

Part C

 $(3 \times 10 = 30)$

Answer any **three** questions.

- 16. State and prove Chebyshev's inequality.
- 17. If the random variables X_1 and X_2 have the joint pdf $f(x_1, x_2) = 2e^{-x_1-x_2}, 0 < x_1 < x_2, 0 < x_2 < \infty$, zero elsewhere, show that X_1 and X_2 are dependent.

3

R5370

- 18. Prove that if the random variable X is $N(\mu, \sigma^2)$ then the random variable $V = (X \mu)^2 / \sigma^2$ is $x^2(1)$.
- 19. State and prove Student's Theorem.
- 20. State and prove Central Limit Theorem.

4

R5370

R5371

Sub. Code	
511403	

M.Sc. DEGREE EXAMINATION, APRIL - 2021.

Fourth Semester

Mathematics

GRAPH THEORY

(CBCS – 2019 onwards)

Time : Three Hours

Maximum : 75 Marks

 $\mathbf{Part} \mathbf{A} \tag{10 \times 2 = 20}$

Answer **all** the questions.

- 1. Define Isomorphism on Graphs.
- 2. Define eccentricity of a vertex in a graph.
- 3. Define Eulerian Tour.
- 4. Define block and k-chromatic graph.
- 5. Define Perfect graph.
- 6. Write down the hall's Theorem (Marriage theorem)
- 7. Define edge chromatic number.
- 8. What is a Hajo's graph? Explain it with diagram.
- 9. Define faces of a graph G.
- 10. Write down the Euler's formula with clear explanation.

Part B (5 × 5 = 25)

Answer all the questions, choosing either (a) or (b).

11. (a) Show that a graph is connected iff it contains a spanning tree.

Or

- (b) For an edge e of a connected graph G, then show that G e is connected iff e is a cycle edge of G.
- 12. (a) Prove that two different blocks of a graph can have atmost one vertex in common.

Or

- (b) Prove that if a connected graph G has 2k vertices of odd degree, then there is a set of k-edge disjoint trails that use all the edges of G.
- 13. (a) Show that for every 3-regular graph without cut edge has perfect matching.

Or

- (b) Show that $r_n \le n(r_{n-1} 1) + 2$.
- 14. (a) Show that the join of the graphs G and H has chromatic number $\chi(G+H) = \chi(G) + \chi(H)$.

Or

(b) Show that for a chromatically k-critical graph G, then no vertex of G has degree less than k-1.

2	R5371

- 15. (a) (i) Show that the dual of any planar graph is connected
 - (ii) If G is a plane graph, then show that $\sum_{f \in F} d(f) = 2m .$
 - Or
 - (b) For a simple planar graph G on atleast three vertices, then show that $m \le 3n 6$. Further more, m = 3n 6 if and only if every planar embedding of G is a triangulation.

Part C
$$(3 \times 10 = 30)$$

Answer any Three questions.

- 16. For a graph T with n vertices, Prove that the following are equivalent:
 - (a) T is a tree.
 - (b) T contains no cycles and has n-1 edges.
 - (c) T is connected and has n-1 edges.
 - (d) T is connected and every edge is cut edge.
 - (e) Any two vertices of T are connected by exactly one path.
- 17. For a simple *n* vertex graph G, where $n \ge 3$, such that $deg(x) + deg(y) \ge n$ for each pair of non-adjacent vertices x and y, then show that G is Hamiltonian.
- 18. State and Prove Turan's theorem.
- 19. State and Prove the Brook's Theorem.
- 20. Prove that every loopless Planar graph is 5-colourable.